Effect of structured inquiry-based laboratory on thinking skills among biology students

Lee Tze Jiun, Nurzatulshima Kamarudin, Othman Talib and Aminuddin Hassan
Faculty of Educational Studies, Universiti Putra Malaysia, Malaysia

ABSTRACT
This study aimed to investigate thinking skills practical achievement tests between Biology students who perform Structured Inquiry-based laboratory (SIL) and students who do not (TT) (only traditional teaching in classroom). Two groups of co-ed Form 4 Biology students (n=64) from two public schools in Kuala Lumpur, Malaysia were selected for the study. Lower-order thinking skills (LOTS) questionnaires about practical were tested in the pre-test and post-test. A curiosity index model (as covariate) which was developed by Ainely (1987) (cited by Fulcher, 2004) was used to investigate levels of the curiosity prior the experiment started due to curiosity might affect the behavior being observed. The Curiosity Index analysis, TT students had higher level of curiosity than SIL students but no significant differences. TT groups also exhibited higher Breadth and Depth levels of curiosity than the SIL, with no significant different shown. The students who were exposed to SIL achieved significant higher LOTS post-test mean score than TT group with a small effect size (partial eta squared) of .16. This paper suggested that students’ thinking skills can be nurtured with the suitable types of instructional method. Eventhough highly curious students tend to explore their surroundings, but without the implementation of proper instructional methods and techniques by their teachers to continuously inspire their curiosity, it is difficult for them to acquire higher level thinking skills.

Keywords:
Curiosity level
Structured inquiry-based laboratory
Malaysia
Introduction

The biology of the 21st century will see the emergence of biologists adept in a multitude of competencies to be on the forefront of innovative trends, ‘The New Biologist is not a scientist who knows a little bit about all disciplines, but a scientist with deep knowledge in one discipline and a “working fluency” in several’ (National Research Council, 2009, p. 20). A paramount statement that necessitates large-scale efforts if a new generation of these biologists is to be realised. For example, only about 45,938 (38%) Malaysia students who studied in STEM fields, out of 122,912 total graduates, graduated from public universities according to Malaysia Education Statistics Education Planning and Research Division 2016 (Ministry of Education Malaysia, 2016). The number is still far away from the policy 60:40 Science: Art students which has been targeted by Ministry of Education Malaysia which had been written inside the educational blueprint. It is a strong wish for new generations to involve themselves in 21st STEM world (Kamarudin, Hamza, & Lee, 2016). But first, Biology students should equip themselves with critical-thinking skills in order to discover more new issues in science and solve problems using science technology.

Thinking is defined as ‘the systematic transformation of mental representations of knowledge to characterize actual or possible states of the world, often in service of goals’ (p.2) (Holyoak & Morrison, 2005). Thinking may revolve around its physical aspect or in an abstract form such as memorising, recalling some facts, making observation, judgment, making assumption, evaluation, make decisions, sharing different ideas, arousing curiosity, visualizing, inquiring and refining (Miller & Stoeckel, 2016).

Bloom’s revised taxonomy proposed six thinking skills from lower-order to higher-order thinking skills: 1) Memorising 2) Understanding 3) Applying 4) Analysing 5) Evaluating 6) Creating (RIC, 2006). Researchers were using Bloom’s thinking skills as a guideline in instructional approaches (e.g. inquiry teaching, computer-assisted, problem-based learning, context-based approach) to improve learners’ thinking skills (Avargil, Herscovitz, & Dori, 2011; Friedel et al., 2008; Niu, Behar-Horenstein, & Garvan, 2013; Saadé, Morin, & Thomas, 2012). Teaching thinking skills become a difficult or complex task for educators where some knowledge is needed to be able to design, or create the proper modules or activities for a certain level of higher order thinking to be achieved and to enable a learner to practise it (Smith, 2002).

Laboratory activities are one of the avenues to enable students to learn thinking skills more comprehensively and significantly at all levels of science education. The cookbook laboratory approach is basically a teacher- and textbook-centred instructional; students go through step-by-step instructions from the book and ‘black and white’ answers are provided, with little room for raising questions or exchanges of ideas about the experiment’s answers (Hutchins & Friedrichsen, 2012; Johnson, Zhang, Kahle, & Broomfield, 2012). On the other hand, the inquiry-based laboratory approach is more student-centred with active learning which gives rise to newfound abilities as learners apply what they learn in the real world (Brickman et al., 2009; Voogt, Tilya, & Akker, 2009). Students who practise the inquiry-based approach have often been found to explore interactions in more details than non-inquiry students.

Nonetheless, a student with inquiry should have these criteria: able to ask relevant questions, form hypotheses, conduct investigation based on choosing the right research questions, carry out experiment planning, conduct the experiment, and lastly able to analyse the findings and make conclusions (Dkeidek et al., 2012). Sometimes, these inquiry criteria may need some assistance from a teacher who is able to delivery inquiry-based instructions effectively. Every teacher interprets inquiry differently and a teacher’s guidance and instructions can be based after highly structured and teacher-centred approaches to open inquiry or just simply getting tools in hands type of inquiry (Dkeidek et al., 2012; Hofstein & Mamlok-Naaman, 2007). Inquiry approaches are student-centred, with students conducting an investigation and finding the answer for scientific questions (Johnson et al., 2012). More research is required to investigate the effectiveness of different approaches for science teachers’ development by providing teachers with skills to implement student-centred instructional techniques in inquiry-type experiences instead of just relying on general learning in the science laboratory (Hofstein et al., 2005).

Curiosity is defined by Berlyne & Walker (1978) as ‘an internal state occasioned when subjective uncertainty generates a tendency to engage in exploratory behavior aimed at resolving or partially mitigating the uncertainty’ (p.98). Many phenomena spark a person’s curiosity at different levels either naturally or aroused various actions such as when doing scientific exploration, engaging in a supernatural scene, solving puzzles, observing sports or trying to solve any unexplained and mystery murder cases (Borowske, 2005). External environment factors that can arouse a person’s curiosity may include classroom facilities, curriculum pedagogy, technology, teaching model and others (Arangala, 2013; Arnone, Small, Chauncey, & McKenna, 2011b; Arnone, 2003; Gottlieb, Oudeyer, Lopes, & Baranes, 2013; Litman & Jimerson, 2004; Pica, 2005). Students with high curiosity were reported to perform better on national academic achievement.
tests than students with lesser curiosity when the school is able to facilitate them with a challenging learning environment (Kashdan & Yuen, 2007). Due to that, curiosity had become one of the major extraneous variables in this study, and two samples that being selected should have no significant different for their curiosity level at the beginning of the research.

Purpose

The purpose of this study was to compare if students correspond with the thinking skills achievement tests between students who perform Structured Inquiry-based laboratory (SIL) and students who do not (TT) (only traditional teaching in classroom) using two secondary school Biology chapters. The specific research question was:

What is the difference between the thinking skills test scores of biology concepts of students experiencing Structured Inquiry-based laboratory (SIL) and the students relying on traditional teaching (TT) alone?

Methodology

This study used quasi-experiment method and employed a pre-test-post-test design was used to investigate the research questions mentioned above. The content validity of the pretest and posttest was examined by two experienced teachers. Items were discussed with the teachers in the content area and their suggestions were used to determine validity of the instruments after confirmed the content of the test was suitable.

Subjects

Two groups of co-ed Form 4 students (n=64) from two public schools in Kuala Lumpur, Malaysia were selected for the study. Both groups possessed similar academic results in biology. Due to reduce the effect of extraneous variable in this study, curiosity level was also been tested so that the groups that been chosen had similar curiosity level.

Instruments

Curiosity

A curiosity index model which was developed by Ainely (1987) (cited by Fulcher, 2004) (Bahadir & Certel, 2013) was used to investigate levels of the curiosity in the two groups of students from different schools. The index has two subscales called Breadth and Depth, totaling 47 items. The Breadth scale consists of 27 items (items 6, 7, 8, 10, 11, 12, 14, 16, 19, 21, 22, 23, 24, 25, 28, 29, 30, 34, 36, 39, 40, 41, 42, 43, 44, 45 and 46) and the Depth scale consists of 20 items (1, 2, 3, 4, 5, 9, 13, 15, 17, 18, 20, 26, 27, 31, 32, 33, 35, 37, 38 and 47). Students showed their agreement for Breadth and Depth item by using a 6 point likert-type index. 1. ‘Completely Agree’, 2. ‘Mostly Agree’, 3. ‘Slightly Agree’, 4. ‘Slightly Disagree’, 5. ‘Mostly Disagree’, 6. ‘Completely Disagree’. It is determined that the minimum score obtained of in the index is 47 (47x1), and the maximum score is 282 (47x6). All positively worded items were reverse coded so that higher scores reflect higher curiosity level. Items 24, 37, 39 and 44 were not reverse coded due to them being negatively worded with respect to curiosity.

Thinking Skills Test

In this study, lower-order thinking skills (LOTS) (e.g. Bloom’s action verbs such as list, state, record, describe) questionnaires were tested in the pre-test and post-test. The questions were adapted from the Malaysian Certificate Education Biology Paper 3 past year’s questions based on the Bloom taxonomy (1956) suggested. Students’ answers were marked by the researcher for consistency fair marking. The pre-test was conducted to identify the students’ existing biology level of the two topics: 1) Movement of substances across the plasma membrane and 2) Chemical composition of the cell (enzyme). The post-test was administered to identify the level of students’ thinking skills after the two classes had gone through the experimental treatment. Sufficiency of time for the students to answer all the thinking skills questions and deliberate over any probable confusing written instructions was the major concerns in the pilot test.

Treatment

The biology content and objectives of the SIL and TT groups were the same and were based on the curriculum of the Curriculum Development Centre, Ministry of Education Malaysia (Curriculum Development Centre Ministry of Education Malaysia, 2005). Both classes were exposed to eight weeks of teaching, one week covering four periods, 35-minutes per period. The lesson was conducted by their own respective subject teachers in schools. Both instructions were in dual language (English and Bahasa Malaysia).

Structured Inquiry-based laboratory (SIL) group

For the TT group (n=28), students with no laboratory practices used all of the four periods per week for the Biology classroom teaching. According to the lesson plan that prepared by the researcher to the teacher for execution, the teacher delivered direct learning to the group. The whole class was put together as a group with lecture notes being delivered through power point slides. After discussing concepts with the teacher and having
given explanation, the students answered questions posted by the teacher. Overall, TT group underwent a direct or a more theory-based instructional method throughout the teaching period by having class discussion with the usual explanation and answers given by the teacher.

Structured Inquiry-based laboratory (SIL) group

The SIL group students were given classroom teaching aided with laboratory practices during the treatment. 24 periods of lecture classes and four laboratory practicals (4x2= 8 periods) were conducted for the group. On top of receiving the same method as the TT group, their classes were laboratory-aided in the practical periods. Four subtopics were chosen for their hands-on practical classes. Teachers conducting the inquiry laboratory based on the lesson plan that prepared by the researcher. The students chose their own classmates and they formed groups of four persons. Only one set of apparatus was given to each of the group during the laboratory practices.

A week before the laboratory class began, the teacher requested the lab assistant to prepare all the apparatus and materials. The students and the teachers had a discussion on the experiments’ objectives, research questions, hypotheses, planning and procedures during lecture time in the classroom.

During the practical class, the teacher took about 5 minutes to brief the students about the experiment. Students were given 45 minutes to finish the experiment. Each student was required to do the experiment at least one time on their own to have the replication results. The replication of an experiment not only gives assurance on the reliability of the outcomes, but also solves the problem often faced by secondary schools today, where students complain about the shortage of apparatus and materials for each of them to conduct experiments. Hence, with this approach, each student was able to experience scientific skills instead of just being an observer during class, thus effective laboratory management can be achieved by the teacher.

Replication results were recorded and gathered from each of the students in the group after having conducted the experiment. Then the teacher took about 5-10 minutes to discuss the results and conclusion with the students before the class ended for the day.

Results and Findings

Lower-order Thinking Skills

The results of the ANCOVA and descriptive data analysis on students’ LOTS post-test scores for SIL and TT groups are shown in Table 1. The table showed that there was a significant different between the LOTS post-test mean scores of SIL group (M=10.22, SD= 3.18) and the scores of the students who were using TT method (M=7.75, SD = 1.92); F (1,61) = 11.51, p= .001, p<.05, with effect size (partial eta square)= .16.

Evidently, the students who were exposed to SIL achieved a higher LOTS post-test mean score than those who were exposed to TT instructional method. A small effect size (partial eta squared) of .16 (Cohen’s 1988) suggests that 16% of the variance in the LOTS post-test scores were related to the differences in the instructional methods.

Table 1. Summary of ANCOVA on students’ LOTS post-test scores of students in LP and TT groups

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Eta-square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected</td>
<td>112.846</td>
<td>2</td>
<td>56.423</td>
<td>7.878</td>
<td>.001</td>
<td>.205</td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>541.673</td>
<td>1</td>
<td>541.673</td>
<td>75.630</td>
<td>.000</td>
<td>.554</td>
</tr>
<tr>
<td>LOTS_Pre</td>
<td>16.584</td>
<td>1</td>
<td>16.584</td>
<td>2.316</td>
<td>.133</td>
<td>.037</td>
</tr>
<tr>
<td>Group (method)</td>
<td>82.415</td>
<td>1</td>
<td>82.415</td>
<td>11.507</td>
<td>.001</td>
<td>.159</td>
</tr>
<tr>
<td>Error</td>
<td>436.888</td>
<td>61</td>
<td>7.162</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5897.000</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected</td>
<td>549.734</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Discussion

This study showed a stark improvement of students who practiced laboratory where they performed better in thinking skills on biology concepts over students who did not. Students in the SIL group performed better in their post-test compared to the students in the TT treatment. Deciphering the data obtained from this study, it appears that inquiry instructional contributed towards students’ thinking skills.

This study had showed that students who practiced inquiry laboratory skills did give better results with their thinking skills (lower-order). Fostering student’s thinking skills with inquiry laboratory practices can be applicable to different curiosity levels of Biology students. Undeniable curiosity plays an important factor in developing a student’s inquiry into scientific
phenomenon. This study showed that type of instructional is more important than just to have natural curiosity in enhancing students’ thinking skills. Basically, inquiry needed students to describe materials, observe their surrounding, ask questions, making hypothesis, collect and analyze data, develop scientific principles, construct explanation and communicate their findings with others (Opara, 2011). A well-planned laboratory should be setup in this way so that can motivate students active learning. Thus, proper physical apparatus and psychosocial factors shall affect students’ thinking skills (Osman, Ahmad & Halim, 2011). In laboratory, when students work in groups, they are given a chance to communicate with the peers, translate the knowledge among themselves and filling the gap of knowledge between stronger and weaker students. All these activities are said to be able to enhance their thinking skills from lower order to higher order (Walton & Baker, 2009; Deacon & Hajek, 2010). Teachers who emphasize group work, as can be seen in this study, are more likely to cause an increase of communication and interaction among the students, which opens up the door to more engaging scientific arguments during the laboratory practices. The peer discussions gave themselves the chances of allow for the sharing of individual ideas, findings, and solutions, resulting in arousal of their curiosity to fill their knowledge gap they had.

Hence, it is important to keep the students highly motivated with such methods on top of sustainable knowledge and skills in order to produce quality science graduates, as aspired in Vision 2020 to meet the nation’s human capital targets and help the country perpetuate talents on a sustainable basis.

Conclusion

This study had shown a significant and promising outcomes of the value of using inquiry laboratory practices in the teaching biology. Although almost everyone has a natural sense of curiosity, they differ according to the topic of interest. Highly curious students tend to explore their surroundings, but without the implementation of proper instructional methods and techniques by their teachers to continuously inspire their curiosity, it is difficult for them to acquire higher level thinking skills. It is interesting to note that the study gives us some telling insights as to how effective inquiry laboratory practices affects students in scientific inquiry, performing experiments, recognising the apparatus and materials, data collection, data interpretation, teamwork discussions, and cooperative learning. This in turn may serve teachers or educators well if they adopt and practise a similar curriculum setting. The laboratory practices may help the students to improve their thinking skills, feel at ease absorbing biology lessons and with the accumulated confidence, they shall achieve better academic results in content of science.

References

A test for measuring scientific thinking, based on physics, was developed and used along with an established test of working memory capacity, known to be a rate-determining factor in much learning. In addition, a test to measure understanding of ideas in physics was constructed and used and the national examination marks for these students in the three sciences and mathematics were considered. It was found that the use of the units had improved scientific thinking significantly with the younger two groups (age 15-16 and 16-17) but no improvement was observed with the oldest group (age 17-18). However, with older adolescents, for the skills to develop, there needs to be some teaching of this way of thinking. In inquiry-based science education, children become engaged in many of the activities and thinking processes that scientists use to produce new knowledge. Science educators encourage teachers to replace traditional teacher-centered instructional practices, such as emphasis on textbooks, lectures, and scientific facts, with inquiry-oriented approaches that (a) engage student interest in science, (b) provide opportunities for students to use appropriate laboratory techniques to collect evidence, (c) require students to solve problems using logic and evidence, (d) encourage students to conduct fu... In structured inquiry the teacher provides the input for the student with a problem to investigate along with the procedures and materials. Keywords: Guided inquiry, Nature of Science, Students, Academic Achievement, Reform Education. ii. Chapter Four (Analysis of Data and Results) 4.1 Students’ Pre-NOS Conceptions 4.2 Guided Inquiry and Students’ NOS Conceptions 4.3 Guided Inquiry and Its Effect on Students’ Achievements. Accordingly, this type of instruction enhances higher-order thinking skills as one of the main goals of NOS and science education reform. 1. The author continues describing the inquiry-based learning environment as an expiation of the past-erroneous view ‘teacher-proof curriculum’, that is a curriculum designed in a cookbook fashion so that everyone who uses the product will have the same results.