A Multilevel Approach to the Study of Motor Control and Learning

Second Edition

Debra J. Rose
California State University, Fullerton

Robert W. Christina
University of North Carolina, Greensboro
CONTENTS

Preface xiii

SECTION ONE: MOTOR CONTROL

Chapter 1: Introduction to Motor Control 1
- Defining Motor Control 2
- Open- and Closed-Loop Motor Control 4
 - Open-Loop Motor Control 4
 - Use of Open- versus Closed-Loop Motor Control 6
- Theories of Motor Control 7
 - Reflex Theories 7
 - Hierarchical Theories 9
 - Dynamical and Ecological Approaches 14
- Does One Theoretical Approach Better Explain How Movements Are Controlled? 19
- Characteristics of Human Action 21
 - Flexibility 21
 - Uniqueness 22
 - Consistency and Modifiability 23
- Does One Theory of Motor Control Better Explain the Characteristics of Skilled Actions? 23
- The Degrees-of-Freedom Problem 26

Summary 29

Important Terminology 29

Suggested Further Reading 30

Test Your Understanding 30

Chapter 2: Scientific Measurement and Motor Control 31

- Psychological Measures 32
 - Response Outcome Measures 32
 - Response Process Measures 41

- Neurological Measures 51
 - Intracellular Recordings 52
 - Lesions and Ablations 52
 - Brain Mapping and Scanning Techniques 53
Chapter 3: Somatosensory Contributions to Action 59

General Properties of Sensory Receptors and Afferent Pathways 60
- Adequate Stimulation 60
- Intensity Coding 61
- Sensory Adaptation 61

The Transmission and Integration of Sensory Input 63

Somatosensation 65
- Cutaneous Receptors 66
- Proprioceptors 67

Transmission of Somatosensory Input 72
- Dorsal Column System 72
- Spinocerebellar Tract 74
- Anterolateral System 74
- Somatosensory Cortex 76

Disorders of the Somatosensory System 77

Application of Theory 79

The Conscious Sensation of Movement 80
- Afferent Sources of Kinesthesis 80

The Conscious Sensation of Muscular Effort 83

Practical Applications 84

The Role of Feedback in Controlling Actions 86
- Knowledge of Body Position 86
- Planning and Modification of Action Plans 86
- Learning or Relearning Movements 87

Errors in Performance 88

Summary 88

Important Terminology 89

Suggested Further Reading 90

Test Your Understanding 90

Practical Activities 91
Chapter 4: Visual and Vestibular System

Contributions to Action 93

Neuromotor Processing of Vision 94
- Reception of Visual Input 94
- Transmission to the Brain 96
- Topographic Organization in the Visual System 97
- The Control of Eye Movements 97

Two Visual Systems? 99
- Two Visual Systems and Motor Control 99

Psychological Studies of Perception and Action 100
- Contrasting Theories of Visual Perception 100

Visual Guidance of Action 103
- Reaching and Grasping 103
- Standing Balance 104
- Locomotion 105
- Jumping from Different Heights 107
- Catching Objects 107
- Hitting Objects 108
- Time-to-Contact Information 108
- Visual Dominance 111
- Role of Vision in Performance of Sport Skills 111

Disorders of the Visual System 113

Vestibular System 114
- Anatomy of the Vestibular System 114
- Peripheral Sensory Reception 116
- Ascending Pathways 117
- Descending Pathways 118
- Vestibular-Visual Interactions 119
- Adaptability of the Vestibular Ocular Reflex 119
- Vestibular Contributions to Equilibrium 120

Disorders of the Vestibular System 121

Summary 123

Important Terminology 124

Suggested Further Reading 125

Test Your Understanding 125

Practical Activities 126
Chapter 5: Developing and Executing a Plan of Action 127

Planning the Action 128
 Making the Decision to Act 128
 Developing a General Plan 129
 Adding Details to the Plan 129
 Executing the Plan of Action 130

The Neuromotor Level of Analysis 130
 The Limbic System 132
 The Association Cortex 133
 The Projection System 133
 Motor Pathways 140
 The Spinal System 144

Moment-to-Moment Control 144
 Types of Motoneurons 145
 Muscle Activation and Force Production 146
 Musculoskeletal Contributions to Force 150
 Subconscious Control of Movement 151
 Solving the Motor Problem 157

Constraints on Action 158
 Intrinsic Capabilities of the Performer 158
 Task-Related Constraints 159
 Environmental Constraints 161

Summary 162

Important Terminology 163

Suggested Further Reading 163

Test Your Understanding 163

Practical Activities 164

SECTION TWO: MOTOR LEARNING

Chapter 6: Introduction to Motor Learning 166

Defining Motor Learning 167
 Motor Learning Is Inferred from Performance 168
 Performance Is Not a Perfect Index of Motor Learning 168
 Motor Learning Produces Reliable Performance Changes 169
 Motor Learning May Not Lead to Performance Improvement 170
 Motor Learning and Instruction, Practice, and/or Experience 171
Contents

Measuring Learning-Related Changes in Perception and Cognition
 Expert–Novice Comparisons
 Visual Occlusion Techniques
 Eye Movement Recordings
 Pattern Recognition and Memory Recall Tests
 Development of a Knowledge Base

Measuring Learning-Related Changes in the Dynamics of Action

Measuring Learning-Related Changes in the Dynamics of Action

Identifying the Learning-Related Changes in Performance

Summary

Important Terminology

Suggested Further Reading

Test Your Understanding

Chapter 8: Setting the Stage for Motor Learning

Motivating People to Learn Motor Skills
 Goal Setting
 Praise and Criticism
 Success and Failure
 Self-Esteem
 Competition and Cooperation

Introducing and Explaining Movement Skills
 Setting the Stage for the Introduction
 Delivering the Introduction
 Delivering the Explanation
 Select the Best Words to Use in the Explanation
 Where to Direct the Learners’ Focus of Attention
 Relate What Is Being Taught to the Learners’ Background

Demonstrating the Skill to Be Learned
 Variables That Influence the Effectiveness of Modeling
 Evaluating the Effectiveness of a Model
 Guidelines for Using Modeling

Theoretical Explanations of the Modeling Effect
 Social Learning Theory
 Direct Perception Approach
Discovery Learning 245
 Applying the Principles of Discovery Learning 247

Summary 248

Important Terminology 249

Suggested Further Reading 250

Test Your Understanding 250

Chapter 9: Organizing the Practice Environment 252

Amount of Practice 253
 Level of Original Learning 254
 Level of Over-Learning 255

Structuring the Practice Session 256
 Specificity of Practice 256
 Variability of Practice 262

Organizing the Practice Schedule 264
 Introducing Interference 264
 Influencing Factors 265

Theoretical Accounts of the Contextual Interference Effect 270
 Elaboration View 271
 Action-Plan Reconstruction View 271

Spacing/Distribution of Practice 272

Techniques for Enhancing the Effectiveness of Practice 274
 Guidance Techniques 274
 Whole-Task versus Part-Task Practice Strategies 275
 Part-Task Practice Methods 277
 Attentional Cuing and Whole Practice 277

Mental Practice 278
 Mental Practice Conditions 279
 Variables Limiting Our Understanding of Mental Practice Effects 282
 Physiological Basis of Mental Practice 284

Summary 286

Important Terminology 288

Suggested Further Reading 288

Test Your Understanding 289

Practical Activities 290
Chapter 10: Augmented Feedback and Motor Learning 291

Functions of Feedback in Motor Learning 293
- Feedback as Information to Correct Performance Errors 293
- Feedback as Positive Reinforcement to Strengthen Correct Performance 294
- Feedback as Negative Reinforcement to Strengthen Correct Performance 295
- Feedback as Punishment to Suppress Errors 296
- Feedback as Motivation for Motor Learning 296

Form of the Feedback 297
- Kinematic and Kinetic Visual Displays 298
- Videotape Feedback 299
- Augmented Sensory Feedback: Biofeedback 301

Precision of Augmented Feedback 303

Frequency of Augmented Feedback 303
- Fading-Frequency Schedules of Knowledge of Results 305
- Bandwidth Knowledge of Results 305
- Reversed Bandwidth Knowledge of Results 307
- Summary Knowledge of Results 307
- Average Knowledge of Results 309
- Self-Regulated (Controlled) Augmented Feedback Schedules 312

Theoretical Explanations of the Frequency Effect 313
- Guidance Hypothesis 313
- Consistency Hypothesis 313

The Timing of Knowledge of Results 314

Summary 316

Important Terminology 318

Suggested Further Reading 319

Test Your Understanding 319

Chapter 11: Memory and Forgetting 321

Contemporary Concepts of Memory 322
- Atkinson and Shiffrin’s Multistore Model 323
- Levels-of-Processing Framework 325
- Neurobiology of Memory 326
The second edition of a Multilevel Approach to Motor Control and Learning expands upon the goal of the first edition: to provide a textbook for upper division undergraduate and entry-level graduate students in kinesiology that addresses motor control and motor learning concepts in the same text. What continues to differentiate this text from others that address one or both of these important subject areas is its multilevel approach. The content contained in this text is not only presented at a behavioral level of analysis but at a neurological level of analysis also. The significantly expanded content at both levels of analysis in the second edition will be particularly appropriate for students interested in pursuing postgraduate studies in health care professions such as physical therapy and/or professional careers in rehabilitation settings.

The book continues to be divided into two sections: Motor Control and Motor Learning. The first section—Chapters 1 through 5—presents an in-depth discussion of the prominent motor control theories and the scientific evidence in support of each theory and/or theoretical perspective. The underlying mechanisms that contribute to motor control are explored at both a behavioral and neurological level of analysis. At the completion of this section, the reader should have acquired a strong understanding of the behavioral and neurological processes that are involved in the planning and executing of many different movement skills.

The second section—Chapters 6 through 12—focuses on the theoretical concepts that underlie the acquisition, retention, and, in some cases, forgetting of learned movement skills. The multilevel theoretical approach is followed in this section also, as the behavioral changes associated with the learning of movement skills are once again linked to the underlying neurological mechanisms. This section of the book also emphasizes practical application as issues related to how motor skills should be introduced and practiced for optimal retention and transfer are discussed.

New to This Edition

1. A coauthor. It is a privilege and honor to be writing this second edition with my mentor, Dr. Robert Christina. Dr. Christina brings a wealth of knowledge and history of the field of motor control and learning that adds a richness and depth to the content presented in a number of chapters, but most notably the motor learning section of the book.

2. A new chapter that addresses the issue of the transfer of learning.

3. Major restructuring and reordering of chapters. The reordering of chapters provides a more cohesive discussion of the subject matter and was based on reviewer feedback and our own critical review of the first edition.

4. Expanded and updated content in all chapters. There is a more comprehensive discussion of the major theoretical approaches that have guided the research conducted in the areas of motor control and learning.
5. Addition of practical activities at the end of selected chapters. These provide the instructor with opportunities to engage the students in classroom activities that add a practical dimension to the theoretical content presented in the book.

6. Addition of more highlight boxes. Each addresses an important theoretical concept or controversy, a classic experiment, or examples of how motor control and learning theory has been applied to practice.

Pedagogical Features

The pedagogical features in the second edition have been expanded to include practical activities at the end of selected chapters, additional summary boxes that emphasize important points presented in the text, and new highlights in every chapter that address pivotal research findings from sport and clinical settings, important theoretical concepts, or practical applications of research.

Acknowledgements

This second edition would not have come to fruition without the significant contributions and support of my coauthor, Bob Christina, and the encouragement of so many of my colleagues in motor control and learning who adopted the first edition of this textbook over six years ago and kept asking when the second edition was going to be published. Of course, our book editors at Benjamin-Cummings kept asking us the same question, as we missed our submission deadlines on multiple occasions. Fortunately for us, Christina Pierson and Deirdre Espinoza both recognized that writing a textbook, even a second edition, is a serious undertaking and one that cannot be rushed if it is to be a product of which everyone can be proud. I would also personally like to thank my faculty colleagues in motor control and learning at Cal State-Fullerton, David Chen and Michelle Barr, who provided me with excellent feedback on the first edition based on their own personal teaching experiences using the book. Finally, I wish to thank each and every undergraduate and graduate student who I have taught in the six years since this book was first published. They have been my very best critics as the target audience for whom this book is intended. I hope that this second edition addresses many of their criticisms of the first edition.

Reviewers

Laurie Lundy-Ekman, Pacific University; Jeffrey M. Haddad, University of Massachusetts–Amherst; Rachel D. Seidler, University of Michigan; Amy Haufler, University of Maryland; Shane Frehlich, California State University–Northridge; Richard Stratton, Virginia Tech; Steven J. Radlo, Western Illinois University; Ann Gentile, Teachers College, Columbia University; Daniel Corcos, University of Illinois at Chicago; Qin Lai, Wayne State University; Lori Ploutz-Snyder, Syracuse University; Gabriele Wulf, University of Nevada–Las Vegas.
What is multilevel approach to the study of motor learning and control? A behavior level analysis-adopting information-processing approach. The environment is important factor in considering movement. Scientific measurements of motor performance and learning, changes in perception and cognition changes in performance. Measuring learning-related changes in perception and cognition Motor Learning and Performance: A Situation-Based Learning Approach, Fourth Edition, outlines the principles of motor skill learning, develops a conceptual model of human performance, and shows students how to apply the concepts of motor learning and performance to a variety of real-world settings. Information Processing in Motor Control and Learning provides the theoretical ideas and experimental findings in the field of motor behavior research. The text presents a balanced combination of theory and empirical data. Chapters discuss several theoretical issues surrounding skill acquisition; motor programming; and the nature and significance of preparation, rapid movement sequences, attentional demands, and sensorimotor integration in voluntary movements.