Thermoelectric Materials 2000
The Next Generation Materials for Small-Scale Refrigeration and Power Generation

Terry M. Tritt (Editor), G. Mahan (Editor), M. G. Kanatzidis (Editor), G. S. Nolas (Editor), D. Mandrus (Editor) (2001)

Editorial Review from Book News, Inc.:

The presentations from the symposium are grouped into the following topics: skutterudites, superlattice, new materials, quantum wires and dots, half-heusler alloys and quasicrystals, TE theory, thermonics, clathrates, and thin films TE. In addition, poster sessions include the following: semiconductors with tetrahedral anions as potential thermoelectric materials, lattice dynamics study of anisotropic heat conduction in superlattices, structure and thermoelectric properties of new quaternary tin and lead Bismuth selenides, attributes of the Seebeck coefficient of Bismuth microwire array composites, and High-Z Lanthanum-Cerium Hexaborate thin films for low-temperature applications.

Book News, Inc.®, Portland, OR

Table of Contents:

Preface

Materials Research Symposium Proceedings
The Synthesis of Metastable Skutterudites and Crystalline Superlattices
How Cerium Filling Fraction Influences Thermal Factors and Magnetism in Ce_yFe_4-xNi_xSb_12
Thermoelectric Properties of Some Cobalt Phosphide-Arsenide Compounds
Epitaxial Growth and Thermoelectric Properties of Bi_2Te_3 Based Low Dimensional Structures
Synthesis and Physical Properties of Skutterudite Superlattices
Artificially Atomic-Scale Ordered Superlattice Alloys For Thermoelectric Applications
Thermoelectric Properties of PbSr(Se,Te)-Based Low Dimensional Structures
Thermoelectric Figure of Merit, ZT, of Single Crystal Pentatellurides (MTe_5-xSe_x : M = Hf, Zr and X = 0, 0.25)
Thermoelectric Properties of Selenide Spinels
Thermoelectric Properties of Tl_9BiTe_6/Tl_9BiSe_6 Solid Solutions
Investigations of Solid Solutions of CsBi_4Te_6
Carrier Pocket Engineering for the Design of Low Dimensional Thermoelectrics
With High Z_3D T
Effects of the Addition of Rhenium on the Thermoelectric Properties of the AlPdMn Quasicrystalline System
Effect of Substitutional Doping on the Thermal Conductivity of Ti-Based Half-Heusler Compounds
High Temperature Thermal Conductivity Measurements of Quasicrystalline Al\textsubscript{70.8}Pd\textsubscript{20.9}Mn\textsubscript{8.3}
Theoretical Evaluation of the Thermal Conductivity in Framework (Clathrate) Semiconductors
Electronic Structure of CsBi\textsubscript{4}Te\textsubscript{6}
Where Should We Look for High ZT Materials: Suggestions From Theory
Enhancement of Power Factor in a Thermoelectric Composite With a Periodic Microstructure
Connections Between Crystallographic Data and New Thermoelectric Compounds
Investigation of the Thermal Conductivity of the Pentatellurides (Hf\textsubscript{1-x}Zr\textsubscript{x}Te\textsubscript{5})
Using the Parallel Thermal Conductance Technique
Compositional and Structural Modifications in Ternary Bismuth Chalcogenides and their Thermoelectric Properties
Doping Studies of α-Type CsBi\textsubscript{4}Te\textsubscript{6} Thermoelectric Materials
Exploring Complex Chalcogenides for Thermoelectric Applications
Semiconductors With Tetrahedral Anions as Potential Thermoelectric Materials
Lattice Dynamics Study of Anisotropic Heat Conduction in Superlattices
Structure and Thermoelectric Properties of New Quaternary Tin and Lead Bismuth Selenides, K\textsubscript{1+x}M\textsubscript{4-2x}Bi\textsubscript{7+x}Se\textsubscript{15} (M = Sn, Pb) and K\textsubscript{1-x}Sn\textsubscript{5-x}Bi\textsubscript{11+x}Se\textsubscript{22}
Processing, Characterization, and Measurement of the Seebeck Coefficient of Bismuth Microwire Array Composites
Characterization of New Materials in a Four-Sample Thermoelectric Measurement System
Crystal Growth of Ternary and Quaternary Alkali Metal Bismuth Chalcogenides Using Bridgman Technique
Thermoelectric Properties of Doped Iron Disilicide
Transport Properties of the Doped Thermoelectric Material K\textsubscript{6}Bi\textsubscript{8-x}Sb\textsubscript{x}Se\textsubscript{13}
Structural Properties of Strain Symmetrized Silicon/Germanium (111) Superlattices
Electric and Thermoelectric Properties of Quantum Wires Based on Bismuth Semimetal and Its Alloys
High-Z Lanthanum-Cerium Hexaborate Thin Films for Low-Temperature Applications
Thermal Conductivity of Bi/Sb Superlattice
Upper Limitation to the Performance of Single-Barrier Thermionic Emission Cooling
Umklapp Scattering and Heat Conductivity of Superlattices
Partially-Filled Skutterudites: Optimizing the Thermoelectric Properties
Bulk Synthesis of Completely and Partially Sn Filled CoSb$_3$ Using the Multilayer Repeat Method
The Influence of Ni on the Transport Properties of CoSb$_3$
Structural Defects in a Partially-Filled Skutterudite
Optimization of Bismuth Nanowire Arrays by Electrochemical Deposition
Evaluation of a Thermoelectric Device Utilizing Porous Medium
Electrochemical Deposition of (Bi,Sb)$_2$Te$_3$ for Thermoelectric Microdevices
Transient Thermoelectric Cooling of Thin Film Devices
P-Type (SiGe) Si Superlattice Cooler
Progress in the Development of Segmented Thermoelectric Unicouples at the Jet Propulsion Laboratory
Thermal Conductivity of Type-I and -II Clathrate Compounds
Framework Stoichiometry and Electrical Conductivity of Si-Ge Based Structure-I Clathrates
Ultrasound Studies of Clathrate Thermoelectrics
Synthesis and Characterization of Large Single Crystals of Silicon and Germanium Clathrate-II Compounds and a New Tin Compound With Clathrate Layers
Electrodeposition of Bi$_2$Te$_3$ Nanowire Composites
Thermopower of Bi Nanowire Array Composites
Experimental Investigation of Thin Film InGaAsP Coolers

Publication and Pricing:

Hardcover, Vol 626 (March 2001)
Material Research Society
ISBN: 155899534X

$ 73.00
Our recommended reading list:

- CRC Handbook of Thermoelectrics (1995)
- Principles of Thermoelectrics: Basics and New Materials Development (2001)
MRS Proceedings Thermoelectric Materials 2000 - The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications: Volume 626. Paperback. Mrs Proceedings. However, despite extensive investigation of these traditional thermoelectric materials, there is still substantial room for improvement and entirely new classes of compounds will have to be investigated. This book, the fourth in a series from MRS, brings together experts in the field not to discuss further optimization of established materials, but instead, to discuss the development of the next generation of materials for small-scale refrigeration and power generation applications.

2.2 Thermoelectricity. Thermoelectric materials endow the free energy from waste heat for useful purposes. A typical thermoelectric material should have high electrical conductivity, low thermal conductivity and thus must maintain a temperature gradient. For an electrically conducting polymer nanocomposites, the electrical conductivity (σ) is expressed as Eq. Thermoelectric Materials 2000 The Next Generation Materials for Small-Scale. Refrigeration and Power Generation. Terry M. Tritt (Editor), G. Mahan (Editor), M. G. Kanatzidis (Editor), G. S. Nolas (Editor), D. Mandrus (Editor) (2001). Where Should We Look for High ZT Materials: Suggestions From Theory Enhancement of Power Factor in a Thermoelectric Composite With a Periodic Microstructure Connections Between Crystallographic Data and New Thermoelectric Compounds Investigation of the Thermal Conductivity of the Pentatellurides (Hf1-xZrxTe5) Using the Parallel Thermal Conductance Technique Compositional and Structural Modifications in Ternary Bismuth Chalcogenides and Their Thermoelectric Properties Doping Studies.